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Abstract—Underwater vehicles most of the time operate in
environments that normally are inaccessible to humans. They can
operate in the depth of the ocean where they have challenging
conditions such as: pressure, light and visibility, among others.
Collaborative autonomous underwater vehicle (AUV) systems
provide a possibility to create groups to work as a team and
do some specific tasks that generally cannot be done by only one
vehicle, saving time and energy in the network. Collaborative
approaches aim to improve the response time of the task and
save the energy on the network. This paper compares the efficacy
and efficiency of three different approaches that use multi-agent
systems. All approaches use different zones or clusters of vehicles.
The first approach uses a leader AUV responsible for the message
propagation, the second uses cluster heads and the third one uses
a BDI model (Belief, Desire and Intention) to allow the agents to
have a simple human behavior. The results show that the second
and third approaches reduce the energy consumed in the network
compared with the first approach (leader).

Index Terms—Autonomous Underwater Vehicles, BDI, Collab-
orative, FIPA-ACL, Multi-agent System.

I. INTRODUCTION

Underwater vehicles operate in environments that normally
are inaccessible to humans. They can operate in the depth of
the ocean where conditions such as: pressure of the water,
light, visibility, are challenging problems for the development
of the vehicles and for the complete the assigned tasks. Taking
into account these difficulties is important to provide reliable
collaboration schemes supported by the adequate combination
of communication protocols, software and hardware. There are
two main types of operation for underwater vehicles: crewed
vehicles and non-crewed vehicles. Non-crewed vehicles con-
sist of remote controlled vehicles and Autonomous Underwater
Vehicles (AUV) that have the possibility to operate without the
assistance of humans. The autonomous underwater vehicles
have gained importance during the last years because they en-
able scientist and researchers to access previously inaccessible
places in the ocean. These advances are now possible due to
improvements in hardware, software and telecommunication
technologies. The development of self-driven vehicles or au-
tonomous vehicles are not exclusive for underwater vehicles,
there is also a very wide area of research for other type of
autonomous vehicles such as: cars, airplanes, and drones. The

developments in one specific domain recurrently can be im-
plemented in other domains. To accomplish the tasks assigned
to an autonomous underwater vehicles network, the concept
of collaboration has been included in recent research work
[2]–[6]. Collaboration schemes, allow autonomous underwater
vehicles to reach their goals in less time, with less resources
and less energy. Due to the possibility of grouping multiple
vehicles to perform some specific tasks, the concept of agents
has demonstrated to be a good option to be implemented in
this type of vehicles [7], [8]. Using agents is possible to create
scenarios in which the vehicles behave and make decisions like
humans, when they work as a team. Some other examples of
collaboration schemes are evident in the nature, for example
ants or bees that cooperate to construct their places of living.

This paper presents three approaches that use the concept of
multi-agent systems to improve the communications scheme,
the time to reach an objective and the energy consumption
in an AUV network. The first approach includes an AUV
network where a vehicle is chosen as leader after being the
first to complete the task, the second approach uses cluster
heads to improve the communication strategy and the third
one uses a BDI model (Belief, Desire and Intention) to allow
the agents to have a simple human behavior. The simulations
were done using Netlogo platform. The rest of the paper is
organized as follows: Section II presents the related work in
the field. Section III gives a background on agents, multi-agent
and FIPA-ACL language. Section IV summarizes the problem
in the AUV networks. Section V presents the model proposed
and the non-collaborative approach. Section VI shows the
simulation environment. Section VI-A presents the results and
analysis. Finally, conclusions are stated in Section VII.

II. RELATED WORKS

Communication based on acoustic signals is dependent on
environmental conditions and it is band and range limited.
Authors of [9] use sonar to transmit the information between
the vehicles and an ad-hoc network with fixed and mobile
nodes on water and a base station on ground. The vehicles
can dynamically decide to stay or not in the group. The
group controller is the fixed node that maintains track of
mobile nodes, detects compromised nodes and provides keys
to encryption. The goal of the network is to protect some978-1-5090-6468-7/17/$31.00 c©2017 IEEE
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objects. The authors design an algorithm that allows the nodes
to use a set of rules to be always close to the object, covering
the largest area possible but being aware of its neighbors to
be on their communication range. They use dead reckoning
to know their location in the water. Similarly, in [3] before
submerge, the vehicles synchronize the time with the GPS
to send data in a periodic time. With the angle of the other
vehicles, measured using a compass, each vehicle can adjust
its own position in the network. Then, the vehicles use dead
reckoning to estimate their own position.

Several authors have been working on the autonomous
underwater vehicles field to use them to do tasks such as
monitoring, surveillance and search of objects. To have a better
performance and reach the goals faster, some authors have
been working on the use of the concept of agents. Authors
of [10], define two types of vehicles: Search AUV (SV), that
has wide field target detection sonar with low resolution, and
Classify AUV (CV) that has narrow field target detection sonar
with high resolution. The target location is known a priori. The
location for each vehicle is known using dead reckoning. Task
allocation could be distributed or centralized. In the first one,
each vehicle operates independently, but coordinated with the
other vehicles. The agent-vehicle decides what to do in every
moment; this is in a predefined negotiation framework. In
the centralized approach, there is a coordinator that plans the
mission and spread the information to the other AUVs, using
Time Division Multiple Access. The authors develop a location
aided auction framework that incorporates a negotiation among
all the vehicles. The authors of [11] present an approach based
on a hierarchical multi-agent control on the AUVs. They define
3 control levels: supervisory, that is the higher level, can
make decisions, monitor the vehicle and communicate with
mothership. The second level or mission, acts as referee among
other levels. Finally, the third level is the vehicle level that has
low level control and interacts with sensors. The authors used
the architecture only in one AUV, but can be scaled to be
used in missions with several cooperative vehicles. Similarly,
the author of [12] presents a motion control architecture that
has 4 levels. The blackboard system level, process information,
manage the system and control the agent behavior. The second
level is the elementary behavior agent group, where agents can
be sway, yaw or heave agents. The third level is the reflection
behavior agent group, used when the system has faults, and
the final level are the actuators. The architecture is part of the
AUV, then all level agents can communicate between then to
make good decisions in the development of a certain task but
the agents cannot communicate with agents of other AUVs.

Using the different classification of agents, some approaches
use goal based agents and service based agents. Authors of
[13] use Goal Driven Autonomy (GDA) model that allows
the nodes to create and prioritize goals detecting unusual
situations. The GDA model has an agent planner that interacts
with an agent controller. The agent controller interacts with
the environment and the state transition system. The controller
detects discrepancies, search the possible causes of the discrep-
ancies, formulate a goal and manage this goal. To detect a dis-

crepancy they have used thresholds for every situation. On the
other hand in [4] the authors use Knowledge-based database
to feed the agents of the AUVs. This database has information
about human skills that allows the vehicles to reason, refine
and adapt to mission. Each vehicle provides basic services or
functionality, so the system can know the capabilities of each
node. The authors develop an architecture for the development
of the agents that is capable of dynamically adapt the behavior
of the agents and reconfigure them to deal with the changes
on the environment. These agents are service oriented, then
the agents that offer several services cooperate to perform a
big process and complete a mission.

Some authors have used the model of colonies such as ant
and bees colonies to model the behavior of the vehicles. The
authors of [6] use an artificial ant agent to collaborate in a
task. The agents have to build solutions, update pheromones
and execute. The goal is to find the cheapest price in a
consuming task allocation scheme. The price is based on
the energy that the vehicle consumes. In recent years there
has been research on the side of the software agents. The
authors of [7] use collaborative agents to solve large problems.
The agents have reactive behavior, internal intentions and
objectives. The agents can interact between them and with
the environment. The agents have some goals that could be
passive (imposed) or could be active, that means that the agent
can manage the actions interacting with the environment to
satisfy the goal. The agents have constraints in the sensors, so
they cannot perceive all the possibilities and attributes of the
environment. Each agent has its own knowledge source. The
nodes have some tasks that they have to plan and transmit at
a certain time. The proposed research was to create a strategy
to transmit the information in a flexible way using different
transmission frequency that the agents must select according
to the environment, but the AUV can not decide to be part of
the task or not.

Our model uses multi-agent systems but is different to [7]
in the use of utility based agents and clustering. We argue that
using clustering and rewards in the network, it is possible to
save more energy and time in the execution of a task. We
proposed also a system that uses BDI (Belief, Desire and
Intention) model to give the AUV a simple human behavior.

III. AGENTS, MULTI-AGENT SYSTEMS AND FIPA-ACL
LANGUAGE

A. Software Agents and Multi-agent Systems
The agents are software entities that can act in an au-

tonomous way and make some decision based on the en-
vironment, and also can learn, cooperate and move. Russell
and Norvig [16] group agents into five classes, based on their
degree of perceived intelligence and capability:

• Simple reflex agents: the decisions are based on the
immediate perceptions and in some rules.

• Model-based reflex agents: the decisions depend on his-
tory or ideal environment.

• Goal-based agents: have fixed goals to achieve that can
be prioritized.



• Utility-based agents: have goals to achieve and can de-
termine to continue or leave the goal based on a utility
function.

• Learning agents: can perform activities according to rules,
models, goals, utilities and can get feedback of the result,
learn and improve its decisions.

A multi-agent system is a distributed system in which the
nodes or elements of the system are agents. In these systems,
the combined behavior of agents produces a smart result.
Multi-agent systems coordinate intelligent behavior of au-
tonomous agents. These agents are part of a network and can
coordinate or share their knowledge, goals, skills and plans to
make a decision or achieve a global goal [19]. A multi-agent
system may also contain combined human-agent teams.

B. FIPA-ACL, KQML and BDI

Communication between agents is based on protocols or in-
tercommunication schemes like Knowledge Query Manipula-
tion Language (KQML) and Agent Communication Language
(ACL). KQML is a language and protocol for communication
between agents. It was created on the early 90s as part of
DARPA Knowledge Sharing Effort [17]. The KQML can be
used to interact with an intelligent system by an applica-
tion program or by other intelligent system. FIPA-ACL was
proposed by the Foundation for Intelligent Physical Agents
(FIPA), and is a standard language for communication between
agents that was the successor of KQML [18], [19]. The
implementation of software agents can be performed with the
help of software models such as The Belief-Desire-Intention
(BDI), which is a software model developed for programming
intelligent agents. In general, this architecture is characterized
by the use of beliefs, desires and intentions in agents, similar to
human behavior. To implement multi-agent software systems
we need 3 elements: Autonomy, Intelligence and Mobility.

IV. PROBLEM DEFINITION

The first applications with underwater vehicles used wired
communications where each vehicle was connected to a moth-
ership using cables. These cables were used also to send power
from the mothership to the AUVs. However, the operation
range was severely limited to only 100 to 200 meters. To
give more autonomy to the vehicles, the network needs to
be wireless. There are 3 options to transmit data in a wireless
media, using radio, optical or acoustic signals. For the first
2 even with a wide bandwidth, MHz in radio and GHz in
optical, and communication speed in the order of Mbps and
Gbps, respectively, the operation range still being too short.
For having an operation range above the 200 meters, the
acoustic signals are the better option for medium and long
communication networks.

The speed of sound in the water depends on the depth. On
the surface, the speed of sound is approximately constant but,
when the AUV starts to descend, the temperature decreases
then, the speed also decreases. But when the AUV is in
the deep ocean, because the temperature remains constant
but the pressure starts to increase, also the speed increases.

TABLE I: Acoustic vs Radio signals

RADIO ACOUSTIC
High Bandwidth (BW) Low Bandwidth (BW)
Short delays Long delays
Well understood propagation Complicated propagation
Distance dependent BW Distance Independent BW
White noise Frequency dependent noise
Accepted channel models No comprehensive channel models

Normally, the speed of sound in the water is 1500m/s and
the transmission rate is between 5 and 100kbps [20]. The
table I presents a comparison between the acoustic signals
and the radio signals [21]. The bandwidth on the acoustic
signals is only 5KHz, and it can be shorter if the distance
between transmitter and receiver is in the range of kilometers.
The propagation delay could be even 1 second and due to
the several interferences under the water. The propagation is
complicated and there is not an accepted channel propagation
model. The noise cannot be modeled as Additive White
Gaussian Noise (AWGN) because it is frequency dependent.
[20], [22].

Commonly, the AUV networks have been developed with
a low number of vehicles, that have some specific objectives
but sometimes do not collaborate with each other. This could
result in a long time to reach the objective and in a high energy
consumption in the network. Multi-agent systems can be
implemented as a strategy to solve the collaboration problems.

Next, we present the problem definition: Given an AUV
network deployed in an area A, consisting of n nodes with
similar sensing components and a stationary mothership M ,
design an energy-efficient distributed algorithm using multi-
agent systems for detecting and reporting an object O inquired
by the mothership M .

V. LEADER AGENT-BASED APPROACH, CLUSTERING
AGENT-BASED APPROACH AND BDI AGENT-BASED

APPROACH FOR MULTI-AGENT SYSTEMS FOR OBJECT
DETECTION AND REPORTING IN AUV NETWORKS

We consider an AUV network consisting of n homogeneous
vehicles N1, N2, ..., Nn and a stationary mothership M . The
vehicles have the same communication range Rc and an initial
energy Einit. The mothership M has communication range Rc

and infinite energy.
Each vehicle has a software agent for collaboration pur-

poses. The goal of the task is to find an object in the ocean.
To model our work, the following assumptions are made:

• There is only one object to search in the area.
• The AUVs navigate in a square zone A.
• The AUVs navigate at the same depth, then all AUVs

move in the same plane and they have the same movement
pattern (random walk).

• The AUVs are using acoustic frequencies to communi-
cate, so the range of coverage is bigger than using radio.

• The AUVs check the medium before sending the message
to avoid collisions.



• The regular AUVs have the same resources (sensing
components and processing power) to search the object,
but the energy could change depending on the scenario.

• The cluster head AUV has more energy and a larger range
of coverage for the communication.

• The AUVs have the same speed.
• The AUVs cannot overpass the border of the area A, then,

the AUVs always stay in the square zone.
Our approaches use multi-agent collaborative model to

improve the performance of the network, save energy and
reduce the time to reach the goal. The communication protocol
adopted for the agents was FIPA-ACL. The goal of our
network is to detect one square object in the sea floor. If an
AUV finds the object needs to send the information of the
location of the object to its neighbors and to the mothership
M . The zone A is divided in i sub-zones. All the sub-zones
have the same number of AUVs. The AUVs cannot go to other
zones if they have not found the object or if have not been
informed of the finding.

A. Leader Agent-based approach

All AUVs start with the same energy. If an AUV found
the object it timestamp the finding of the object, them it
starts searching its neighbors to inform them about the finding.
When it finds a neighbor, they exchange timestamps if both
have them. The one with older timestamp, becomes the leader
and will continue searching for its neighbors to inform them
about the finding. The other one will acknowledge (ACK) the
finding and will go to the mothership. After informing all the
neighbors, the leader needs to visit the other zones and inform
at least one AUV for each zone. Then, the leader goes to the
mothership. The nodes informed by the leader become co-
leaders and will propagate the message only in their one zones.
In this case we have a leader that is in charge of collaboratively
inform everybody about the finding. The leader will then be
any AUV, that first find the object. The pseudocode of the
object reporting mechanism is presented in Algorithm 1.

B. Clustering Agent-based approach

In this case, all AUVs also start with the same energy. The
AUVs are part of a cluster that is determined by a sub-zone and
each cluster has a Cluster Head (CH). The CH is a static buoy
at the center of the sub-zone that has radio communication
with its CH neighbors and with the mothership M . If an AUV
finds the object, it timestamps the finding and goes to the CH
location to inform the location of the object. Then, the CH
broadcast the information to its cluster members and to the
CHs neighbors that are within its range of coverage. If the
other CHs are not in its range of coverage, it is going to use
a multi-hop strategy. When other CH receives the message of
object found, it also broadcast the information to its nodes.
When a node in a cluster receives the found message, goes to
the mothership M . This case is more energy efficient because
once a vehicle finds the object and informs the CH about
the finding, the rest of vehicles of the cluster will receive the
message and go directly to the mothership. The same situation

Algorithm 1 Leader Agent-based approach - Object Reporting
(agent Nj)

1: if Nj found object == True then
2: set timestamp of object found
3: while neighbor’s table check == not complete do
4: continue navigating searching for neighbors
5: if find neighbor then
6: if neighbor also found object then
7: Check time stamp of both nodes
8: if Nj .timestamp > neighbor.timestamp then
9: Nj leader == True

10: check mark neighbor in neighbor’s table
11: else
12: exchange neighbor’s table
13: ACK object found and go to M
14: end if
15: end if
16: end if
17: end while
18: visit every other zone to inform the finding to one AUV in

that zone
19: Go to the mothership
20: else
21: continue searching the object
22: if find neighbor from other zone then
23: if neighborleader == True then
24: Exchange information about finding
25: NjCOleader == True
26: Find neighbors to communicate finding
27: end if
28: end if
29: end if

Algorithm 2 Clustering Agent-based approach - Object Re-
porting (agent Nj)

1: if Nj found object == True then
2: set timestamp of object found
3: while object found message send to CH == False do
4: navigate searching for Cluster head
5: if find CH == True then
6: inform CH about object found
7: end if
8: end while
9: go to the mothership M

10: else if Nj receive CH message == object found then
11: go to the mothership M
12: else
13: continue searching the object
14: end if

happens for the other clusters. The problem with this scheme
is that it only works for scenarios with an extra device, the
buoy, and is more expensive. The pseudocode of the object
reporting mechanism is presented in Algorithm 2.

C. BDI Agent-based approach

Each AUV has beliefs, desires and intentions, so we use the
concept of utility-based agents [16]. The beliefs are defined
as optimistic, doubtful, or pessimistic. An AUV can leave the
zone and go to the mothership if any of these two conditions
occurs:



• The AUV found the object or received a message that
someone found the object. It confirms that its neighbors
know that the object was found, sending a message to
them and receiving an acknowledgement.

• It is or it becomes a pessimistic AUV
Each AUV has a table with the IDs of its neighbors. The

desire of all vehicles was defined as the goal to find the
object, and the intentions were defined as the actions needed to
accomplish the goal. In this case we have three intentions: first,
look for the object which include the functions of moving and
sensing. Second, communicate with other AUVs and finally,
go to the mothership. The implementation of beliefs, desires
and intentions, was done using 3 stacks, each representing one
of them. For example, at the beginning each AUV has the 3
intentions in the stack but executes the one corresponding to
its beliefs. When the AUV changes its beliefs for example
from optimistic to pessimistic, they remove the intention of
”look for the object” and execute the new intention ”go to
the mothership”. In this case we implement a utility function
that is evaluated by vehicles before each movement. This
feature helps the agents to make decisions about continuing
or stopping the search of the object at some point in the
simulation. The utility function evaluation allows vehicles to
change their beliefs at any point of the search. The utility
function is given by:

U = P ∗R (1)

Where U is the utility, P is a probability, R is a reward
that can be configured in the simulation and Einit is the initial
energy of the AUV, and is a value between 150 and 1000 units.
the probability P is given by:

P = 1− (Einit − CurrentEnergy)

Einit
(2)

Beliefs of the vehicles are given based on the initial energy
and a reward:

• Optimistic vehicles will risk more during the search, even
if their energy level is getting low. The Utility function
is a value between 800 and 1000.

• Doubtful vehicles could decide to be optimistic or pes-
simistic at a specific point of their energy consumption.
The utility function is a value between 500 and 800.

• Pessimistic vehicles do not risk their energy, so always
decide to not be part of the mission, and leave the zone to
go to the mothership. They can be defined also as energy
saver AUV. The utility function is a value less than 500.

The communication protocol adopted for the agents was
FIPA-ACL, using some of the performatives defined such as
[18]:

• to receive [msg]
• to send [msg]
• create-message [performative]
• create-ack [performative msg]
• get-sender [msg]
• get-receivers [msg]

Algorithm 3 BDI Agent-based approach - object Reporting
(agent Nj)

1: if Nj utility function ≤ 500 then
2: Declare itself pessimistic
3: Go to mothership M
4: else if 500 < Nj utility function ≤ 800 then
5: Declare itself doubtful
6: set decision to continue or give up
7: if decision == give up then
8: Declare itself pessimistic
9: go to sink or mothership S

10: else
11: Declare itself doubtful
12: search for the object
13: end if
14: else if Nj utility function > 800 then
15: Declare itself optimistic
16: search for the object
17: end if
18: if Nj found object == True then
19: set timestamp of object found
20: while neighbor’s table check == not complete do
21: continue navigating searching for neighbors
22: if find neighbor then
23: if Neighbor also found object then
24: Check time stamp of both nodes
25: if Nj .timestamp > neighbor.timestamp then
26: Nj leader == True
27: check mark neighbor in neighbor’s table
28: else
29: exchange neighbor’s table
30: ACK object found and go to M
31: end if
32: end if
33: end if
34: end while
35: visit every other zone to inform the finding to one AUV in

that zone
36: Go to the mothership
37: else
38: continue searching the object
39: if find neighbor from other zone then
40: if neighborleader == True then
41: Exchange information about finding
42: NjCOleader == True
43: Find neighbors to communicate finding
44: end if
45: end if
46: end if

• add-sender [sender msg]
• add-receiver [receiver msg]
These performatives allow agents to communicate with each

other using the standard defined by FIPA. The pseudocode of
the object reporting mechanism is presented in Algorithm 3.

VI. SIMULATIONS

We conducted simulations using Netlogo 5.3.1 [1]. NetLogo
is based on the Logo programming language and it has a
simple and powerful interface that allows a large variety of
simulations and modeling phenomena. The models in Netlogo
can have a high degree of complexity and the networks



TABLE II: Parameters of the simulation

Simulation time 2hr
Length of the side of A.L (m) 1000
Number of Clusters or zones 4
Area of the object 100m2

Initial energy 1000units
speed of the AUV (m/s) 2.5

Fig. 1: Average residual energy per vehicle.

can have hundreds of agents. NetLogo was designed by Uri
Wilensky in 1999, director of the University Northwestern and
is written in Java and Scala and runs on Java virtual machine.
NetLogo is part of a series of multi-agent systems modelers
which began with StarLogoT [23]. The parameters chosen for
the simulations were defined taking into account values of
normal AUVs real life mission. The speed of the vehicles is
the average speed of an AUV given by [24]. In the simulations,
the user can design the environment adding obstacles and can
define the number of AUVs in the area. However, in this case,
we do not add any obstacle in the area. The parameters for
the simulation are presented in the Table II.

The AUV network is deployed into a square area with side
length A.L = 1000m, and the object to search is randomly
deployed in the field at the beginning of the simulation.

For each approach, 100 runs of the simulation were com-
pleted. The three approaches include a squared area divided in
4 zones. Each zone has a certain number of AUVs that can be
modified. The zones can have some obstacles which the AUVs
are able to avoid. For the simulation of the models some as-
sumptions of the scenarios and AUVs were made. The search
area is 2 dimensional (X and Y axis). All vehicles are the same
type of vehicles in terms of movement patterns (random walk),
the consumption of energy depends exclusively of the amount
of movement, the power consumption of the sensor and the
communication devices are not included in the calculations.
No AUV could exit the zone to go to the mothership if it
did not find the object or if it did not receive a message that
other AUV found the object. The initial energy of the AUVs
is 1000units in all the scenarios.

Fig. 2: Average residual energy of the network BDI Agent-based
approach.

A. Simulation Results

Figures 1 and 2 show the residual energy of the network
for n = 20 nodes, 5 in each zone, and length of the area
A.L = 1000m.

In Figure 1, the residual energy for the first and third
approaches is lower than the second approach, because the
communication strategy requires one of the vehicles share
the information that the object was found with the neighbors
in the zone and with one vehicle in the other zones. The
second approach uses a static node that acts as a cluster
head whose role is to collect the information and share this
information with the mothership and the other cluster heads.
This setup reduces the energy consumption of the vehicles
overall. For the case of reward equals to 2000 in the BDI
approach, the simulation runs similarly to the Leader Agent-
based and Cluster Agent-based approaches. There is no evident
advantage due to the use of the BDI architecture, because the
reward is high enough to keep all the vehicles active during
the whole mission.

Using the BDI approach the results for the energy varies
significantly according to the rewards for the vehicles. In
Figure 2, when the reward is small (600) about 50% of
the vehicles declare themselves pessimistic, compromising the
success of the mission but saving more energy. When the
reward is 850, more vehicles are motivated to keep looking for
the object, then the residual energy is similar to the scenario
with reward of 600, but is higher than in the case of a reward
of 2000. This is because, when the reward is 2000, more
optimistic vehicles are searching for the object, consuming
energy, but when the reward is 850 some vehicles are looking
for the object and some are saving energy being pessimistic.

Tables III and IV present the results for the average time to
find the object. As shown in the tables, the three approaches
have similar times to find the object. Only in the BDI Agent-
based approach when the reward is 600, more vehicles aban-
don the mission, and less cars are searching for the object,
which affects the time to reach the goal.

Tables V and VI show the percentage of missions com-



TABLE III: Average time to complete the mission

Approach Time (min)
Agent-based 72.78
Clustering-Agent-based 59.65
BDI Agent-based, reward=2000 69.9

TABLE IV: Average time to complete the mission approach 3

Reward variation Time (min)
BDI Agent-based, reward=2000 69.9
BDI Agent-based, reward=850 67.58
BDI Agent-based, reward=600 81.1

pleted. For Table V, the approaches have similar behavior and
approximately 83.5% of the times, the object is found. This
is due to the use of a random walk model in the simulation.
Similar to the time comparison, the case with reward of 600
has less percentage of mission success due to more vehicles
abandoning the mission.

TABLE V: Percentage of missions completed approach 1 and
2

Approach Percentage (%)
Leader Agent-based 84
Clustering Agent-based 82
BDI Agent-based, reward=2000 83.3

TABLE VI: Percentage of missions completed approach 3

Reward variation Percentage (%)
BDI Agent-based, reward=2000 83.3
BDI Agent-based, reward=850 83
BDI Agent-based, reward=600 58

Table VII shows the average number of cars that abandon
the mission in the BDI-Agent-based approach. There is a direct
relation between the number of cars leaving the mission and
the reward. This is, when the reward is bigger, such as 2000, all
the cars are optimistic, so they continue searching the object.
Now, when the reward is small, more cars decide to leave the
mission, and it is less likely to find the object.

VII. CONCLUSIONS

This paper presents three strategies based on agents for
autonomous underwater vehicles. Based on the simulation
results, the clustering agent-based is the most energy efficient
approach, additionally it saves time in the communication
stage of the mission. However, the disadvantage is that it
requires additional infrastructure for the cluster heads.

Better success rates and less time in the missions could
be obtained implementing movement strategies different than
random walk, for example avoiding the AUVs to pass through
the same place twice.

The BDI agent-based approach is an important model
because it gives the system a decision making behavior similar
to humans. The beliefs, desires and intentions provide three
levels of configuration for the agents, whose combinations give
the system sometimes an unpredictable result.

TABLE VII: Average number of cars abandoning mission
approach 3

Reward variation Average number of cars
BDI Agent-based, reward=2000 0
BDI Agent-based, reward=850 6.8
BDI Agent-based, reward=600 9.1

More sophisticated knowledge data bases can be integrated
in the future to provide the agents with better criteria for
decision making. Additionally, learning capabilities can be
given to the agents to have a better performance in the
missions.
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